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Introduction

Deep Learning

e Convolutional neural network (HMAX model)
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Introduction

Spiking Neural Network

@ Spiking neurons
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Introduction

Neuron Model

o Leaky integrate-and-fire (LIF) model

Potential (arbirary units)

@ Define neuron behaviors

@ Coincidence detector
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Introduction

Spiking Coding Scheme

@ Spiking rate vs spiking timing sequence
e Rank order coding (ROC)

spike i i i l Ima.es[w
The highest input
nput

@ Neuron is only allowed to fire at most once

o First spike wave is enough for further processing
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Introduction

Spiking Coding Scheme

@ One input image and its spiking pattern
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Introduction

Learning Method

@ Spike-timing dependent plasticity (STDP)
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Main Works

Event-driven Continuous STDP Learning (ECS)

State-of-the-art Methods
Spiking rate-based models

v

Vanishing/exploding gradient problem
Over-fitting, not robust

Incorporate global error information
Require long processing time

Not biologically plausible

Spiking timing-based models

Require supervisory signal, no strong experimental
confirmation

STDP is used as a local feature extractor

@ Not biologically plausible



Main Works

Event-driven Continuous STDP Learning (ECS)

@ ECS architecture

Eﬂ Input image sequence

HMAX model with sparsity
and intermediate features

2 teatur vctor seauence |+ |

Modified ROC scheme

Feature extracting layer

Spiking pattern sequence Spiking encoding layer

Event-driven
STDP learning

Spiking pattern
learning layer
(include n maps
with k neurons
for each map)
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winner-take-all

Class 1 Class 2 Class n
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Main Works

Event-driven Continuous STDP Learning (ECS)

e Convergence analysis

Input spiking patter sequence
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Main Works

Event-driven Continuous STDP Learning (ECS

@ Robustness analysis

Input spiking pattem sequence
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Main Works

Event-driven Continuous STDP Learning (ECS

@ Experimental results

TABLE 1V: Classification accuracy performance using different methods on MNIST database.

Performance

Spiking Coding-type Archi P i (Un-)supervised Learning Rul
piking Coding-type s carning RO Simple random sampling * Exhausfive ©
Spiking comotional Moditied HMAX Supervised ECSithis paper) 89% 93.0%
rimebased neural networ h ] s
Two Tayer network[T0] __ Sipiified TIVAX Supervised Tempotron ule 0% NA
Two Tayer network[ 1] Simplified HMAX Supervised Tempotron rule NA 1A%
Dendritic neurons(4] T o Supervised Morphology Tearning NA 90.3% 1
Spiking RBM[S] None Supervised  COreine v NIA 9.0%
Thanced fraining set — y N -
Spiking RBM[6] o 150000 cxamoiss_ Supervised  Contrastive dive NA 89.0%
Spiking convolutional None Supervised Backpropagation NA 99.1%
neural network{7] g
Spiking RBM[S] Thiesholding Supervised  Contrasive dvergence NA 7367 T
Spiking REM[S] Thresholdin, Supervised — Contrastive divergence NA 91.9%
Two layer network[9] Edge-detection Supervised STDF “:"I”\'h;““““‘ N/A 96.5% ¢
Slyer erarehical o STDP with calcium A Py
neural network 1] variable
Two fayer network[2] None Unnsupervised Rectangular STDP NA 935%
Two Tayer network[3] None Tnsupervised NA 95.0%

« Simple random sampling performance has been generated by averaging 10 random tests using 50 random training samples per clas
which is suitable for real-time learning since the whole database is impossible to obtain in most real scenarios.

® Exhaustive performance shows the ideal experimental results by using whole 60000 training samples and 10000 testing samples within MNIST database.

€ The authors only use 1000 testing samples to obtain the performance

4 The authors only use 5000 testing samples (o obtain the performance

© The authors use 10000 randomly chosen samples from MNIST database instead of the dedicated testi

and 100 random testing samples.

2 database
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Main Works

Video-based Disguise Face Recognition (VDFR)

» State-of-the-art VFR Methods
@ Set-based methods

@ Sequence-based methods

» Research Problems
@ It is often hard to obtain the ideal face frames
@ Rely on the features which will be difficult to capture when

there are invisible areas

@ Does not incorporate disguise variations in current databases
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Main Works

Video-based Disguise Face Recognition (VDFR)

o VDFR architecture

] Input video
Dynamic movements extracting layer
2 (frame difference sequence)
HMAX model with sparsity
and intermediate features ~_

€2 teature vector sequence Ceeeeeen High level feature extracting layer

Modified ROC scheme
- Ceeesaas Spiking encoding layer
Spiking pattern sequence

Event-driven
STDP learning I

Spiking pattern
learning layer
lude n maps
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Output Layer
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Main Works

Video-based Disguise Face Recognition (VDFR)

@ dynamic facial movements

Graysacle dynamic changes of a fixed pixel (forehead)
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Main Works

Video-based Disguise Face Recognition (VDFR)

@ Flowchart
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Main Works

Video-based Disguise Face Recognition (VDFR)

@ Experimental results

TABLE V: Classification performances of two different meth-
TABLE III: Correct classification performance using different num- ods on testing mixed video clips (%).
ber of training and testing video clips (%).

Method I Correct rate Wrong rate  Unknown rate
Number of training video clips  Number of testing video clips | Performance
, N 5
\ 4 905 CNN [29] 96.7+0 33£0 0
5 3 100 Proposed VDFR method 100£0 0+0 0
3 2 100 * Note: The classification rate has been computed by averaging 10 random
tests.
TABLE 1V: Classification performances of two different meth- TABLE VI: Classification performances of two different meth-
ods on testing video clips with disguise (%). ods on testing unknown video clips (%).
Method ‘ Correct rate Wrong rate Unknown rate Method ‘ Correct rate~ Wrong rate  Unknown rate
CNN [29] 93.1+£1.35 6.9+1.35 0 CNN [29] 0 0 100£0
Proposed VDER method | 95.2+2.65 4.8+ 0 Proposed VDER method 0 0 10040
© Note: The classification rate has been computed by averaging 10 random * Note: The clz tion rate has been computed by averaging 10 random
tests. Furthermore, we have conducted a Wilcoxon signed-rank test on the lests

correct classification performances by using the above two methods and
computed the significance level p — value (0.03429). Such significance
level (p — value < 0.05) indicates that the two correct classification
performances are statistically different.
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Main Works

A Spiking LGMD Model for Collision Detection

> Research Problems of Current Models

@ Only incorporate spiking concept in final decision making step
@ Do not incorporate spiking neural network during detection
°

Do not generate the collision selection observed in LGMD cell

v

Proposed model

@ Add a spiking encoding layer behind the P layer

@ Incorporate a Poisson point process to generate spike trains
@ Spikes are the only accepted information medium

@ Use an exponential level conductance-based LIF model within
S layer
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Main Works

A Spiking LGMD Model for Collision Detection

o Differentiate the post-synaptic membrane potentials generated
when approaching and receding the object

@ Generate a similar collision selection as the real LGMD cell

@ Compare with current models, it is biologically plausible
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Main Works

A Spiking LGMD Model for Collision Detection

Input spiking pattern sequence
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Main Works

A Spiking LGMD Model for Collision Detection

Input spiking pattern sequence
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Main Works

A Spiking LGMD Model for Collision Detection

Input spiking pattern sequence
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Main Works

A Spiking LGMD Model for Collision Detection

Input spiking pattern sequence
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Future Works

Future Works

o Finish the spiking LGMD model for collision detection

@ Investigate the proposed VDFR method against a complex
moving background

@ Propose an alternative competitive learning method to replace
the current STDP learning rule
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Future Works

Thank you!
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